The generator matrix 1 0 0 0 1 1 1 1 2X+2 1 1 3X+2 X X+2 1 1 1 1 1 X+2 X+2 2X+2 2X 1 3X+2 1 1 2 1 1 2X+2 1 1 1 1 3X+2 1 X+2 2X+2 2X X+2 3X 2 2X+2 1 1 1 1 1 3X 3X 2X 1 2 1 1 1 1 0 1 2 1 1 2X X+2 1 1 1 X 1 1 1 1 1 0 1 0 0 X 2X+3 2X+1 2 1 X+3 3X+2 1 1 0 3X+3 3X+1 2X 3 3X 1 3X 1 3X 1 1 0 2X+2 1 X+3 0 2X 3X X 2X+3 2X 1 3X+1 1 1 1 3X 3X+2 1 2 X 3 3X+1 3X 2X+3 1 X 1 2X 1 2X+1 3X+2 3X+2 3X+1 X+2 2X+3 X 3X 2 2X+2 1 3X+1 X+3 3X+3 3X+2 X+1 X+2 3X+2 X+3 2X+2 0 0 1 0 0 2X+2 1 2X+3 2X+3 2X 2X+1 0 3X+3 1 1 2X X+3 2 X+3 3X+2 1 X+2 X 3 2X+3 2X X+2 X+3 2X+3 2X+3 1 X+3 3X+2 X+1 3X+3 2X+3 2X+2 3X+1 2X 0 3X+2 1 2X+1 3X 3X+2 3X+2 X+2 X 2X+2 2 1 3 X 3X+2 3X+3 3X 2X+1 3 1 X+3 2X+2 3X X+3 1 3 3X 2X 3X+3 3X 1 X+2 X+2 X+3 2X+2 0 0 0 1 1 3X+3 2X+2 X+1 3X+3 3X X 3X+3 3X 3X+1 2X+1 X+3 X+1 3X+2 0 X+3 2X+1 3X 1 X X+2 3X+2 3 2X+1 X+3 0 2X 2X+3 3X+3 2X+3 2X+1 3 2X+2 2X 3X+1 X+2 1 3X+1 1 1 X 3X+1 3X+2 3X+3 3X+3 3X 2X+2 X+1 3X 2X 3X+2 2 2X+3 0 2X+1 0 1 2X+2 3 3X X+1 X+2 2 3X+3 1 2X+2 3X+2 2X+3 2X+2 0 0 0 0 0 2X+2 0 0 0 0 2X+2 2X+2 2X+2 2X+2 2 2 2 2 2X 0 2X 2X 2 2 2 0 2X+2 0 2 2X 2X+2 2 2 0 2X+2 2X 2 2 2X+2 2X+2 0 2X+2 2X+2 2X 0 2X 2 2X+2 2X+2 2 2X 2 2 2X+2 2X+2 2X+2 2 2 2X 2X 2X 0 0 2X+2 2X+2 2X+2 0 2X 2X 2 2X+2 2 2X 2X 0 generates a code of length 74 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 65. Homogenous weight enumerator: w(x)=1x^0+212x^65+920x^66+2658x^67+5380x^68+9744x^69+14476x^70+20896x^71+26320x^72+33230x^73+33489x^74+34042x^75+27188x^76+21652x^77+14132x^78+8702x^79+4981x^80+2418x^81+887x^82+424x^83+189x^84+144x^85+26x^86+10x^87+4x^88+8x^89+6x^90+4x^91+1x^92 The gray image is a code over GF(2) with n=592, k=18 and d=260. This code was found by Heurico 1.16 in 717 seconds.